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We study the proximity effect in a ferromagnetic nanoparticle having a vortex magnetization pattern. We
show that for the axisymmetric system consisting of a circular particle and a magnetic vortex situated at the
center of it no long-range superconducting correlations are induced. It means that induced superconductivity is
localized in the small area near the superconducting electrode. However, in the real system axial symmetry can
be broken by either a shift of the magnetic vortex from the origin or a geometrical anisotropy of the ferro-
magnetic particle. In this case a long-range proximity effect is possible.
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I. INTRODUCTION

Proximity effect in hybrid ferromagnetic/superconducting
�FS� structures reveals a rich physics originating from the
interplay between magnetic and superconducting types of or-
dering �see Ref. 1 for review�. There are two essential fea-
tures of the proximity effect in FS structures which make it
different from that in superconductor/normal-metal �SN�
structures. In SN structures the penetration length of a con-
densate wave function into the normal metal is determined
by the normal-metal coherence length �N=�D /2�T, where
D and T are the diffusion coefficient and temperature. First,
in contrast a ferromagnetic coherence length which is also a
depth of the condensate penetration into a ferromagnet in FS
system is much shorter �F=�D /h provided that the exchange
energy h is rather large h�T which is usually fulfilled.
Second, the penetration of Cooper pair wave function into
the ferromagnetic region �F� is characterized by the
damped oscillatory behavior of a correlation function
f �exp�−x /�F�sin�x /�F� which is a result of exchange split-
ting between energy bands of conduction electrons with dif-
ferent spin projections. In fact the origin of oscillations is the
same as for the Fulde-Ferrel-Larkin-Ovchinnikov state.2 This
results in many new effects, such us spatial oscillations of
the density of states,3 a nonmonotonic4 or reentrant5 behavior
of the critical temperature as a function of a ferromagnetic
layer thickness in layered FS structures. Also it is responsible
for the formation of Josephson � junctions6 and spin valves.7

Despite the short coherence length in the ferromagnetic
region there is a possibility of a long-range proximity effect
in FS structures with inhomogeneous magnetic structure. In
experiments on FS systems with strong ferromagnets an
anomalously large increase in the conductance below the su-
perconducting critical temperature Tc was observed.8–10 Also
recently the Andreev interferometer geometry was used to
measure the phase sensitive conductance modulation in the
FS system with helical magnetic structure.11

The first theoretical analysis of a long-range proximity
effect in FS structure with inhomogeneous magnetization
was done for a Bloch-type domain wall at the FS interface.12

It was shown that a superconducting correlation function
contains components which survive at the distances of order
of the normal-metal correlation length from the supercon-
ducting boundary. These long-range superconducting compo-

nents have nontrivial structure in spin space. Conversely to
the ordinary Cooper pairs which have a singlet spin structure
they have a triplet spin structure which corresponds to cor-
relations between electrons with the same spin projections.
Therefore the long-range superconducting components in FS
systems are usually called the long-range triplet components
�LRTC�. The LRTC can be generated in systems with
Bloch12 and Neel13,14 domain walls or helical magnetization
pattern.15 The long-range proximity effect was shown to ex-
ist in multilayered FS structures with noncollinear magneti-
zation in different ferromagnetic layers.16–19 Large attention
has been paid to the investigation of long-range Josephson
effect due to LRTC in FS systems �see Ref. 20 for a review�.
Recently in Ref. 19 a multilayered SFIFIFS structure has
been shown to demonstrate a controllable crossover between
long-range triplet and short-range singlet Josephson effects
with the rotation of the magnetic moment of any of the F
layers.

The present paper is devoted to another possibility of con-
trollable switching between long- and short-range proximity
effects by employing the peculiar properties of ferromagnetic
nanoparticles. In some sense the magnetization of a nanopar-
ticle is more simple than the domain structure of macro-
scopic ferromagnets; therefore, theoretical findings could be
proven by experiments with nanoparticles. It is now well
understood that a magnetization distribution in a single par-
ticle is determined by the competition between the magneto-
static and exchange energies. If a particle is small, it is
uniformly magnetized, and if its size is large enough a non-
uniform �vortex� magnetization is more energy preferable
�see, for example, Refs. 21–28�. Besides the geometrical
form and size, the state of the particle depends on many
other factors. For example, if the ferromagnetic particle is
initially in the vortex state then by applying a homogeneous
in-plane magnetic field one can shift the center of a magnetic
vortex toward the particle edges.29 If the magnetic field is
large enough the magnetic vortex annihilates; i.e., the par-
ticle becomes homogeneously magnetized. Conversely, by
applying magnetic field to the homogeneously magnetized
particle in the direction opposite to its magnetic moment one
can force a nucleation of magnetic vortex. Experimentally
the shifting of magnetic vortex is observed as a linear growth
of the particle magnetic moment which saturates at the field
of vortex annihilation. A transition from homogeneous to
vortex state leads to a large jump of the magnetic moment so
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the magnetization curve of a ferromagnetic nanoparticle is in
general highly hysteretic.30

In practice superconducting correlations in a ferromag-
netic nanoparticle can be induced in planar geometry by lat-
eral superconducting junctions connected to the particle. Ob-
viously if the particle is homogeneously magnetized then no
long-range correlations are induced and the proximity effect
is short range. If the particle is in vortex state the situation is
not so obvious and the special investigation is needed.
Throughout this paper we will consider only the vortex state
of the ferromagnetic particle. We will show that for a circular
particle there is no long-range superconducting correlations
if the magnetic vortex is situated at the center. However if
the magnetic vortex is shifted from the center by an external
field there appear long-range correlations. Moreover an axial
anisotropy of geometric form of the particle also leads to a
long-range proximity effect.

The structure of this paper is as follows. In the next sec-
tion we describe our model, present the basic equations, and
give a qualitative explanation of the long-range proximity
effect in a ferromagnetic nanoparticle with vortex magneti-
zation. In Sec. IV we present our main results which are
discussed in Sec. V. Finally the conclusions are given in
Sec. VI.

II. MODEL AND BASIC EQUATIONS

We consider a system shown schematically in Fig. 1. It
consists of a ferromagnetic nanoparticle and a lateral super-
conducting lead. The particle magnetization is assumed to
form a magnetic vortex state. The structure of magnetic vor-

tex is shown in Fig. 1�b�. It can be described by the rigid
vortex model proposed by Usov and Peschany31 and by Gus-
lienko and co-workers.29 Within this model magnetization
has a z component only inside the core region whose size is
determined by a ferromagnetic exchange length lex. Outside
this region magnetization lies within xy plane. Typically the
exchange length is quite small lex�10 nm compared to the
sizes of ferromagnetic nanoparticles R�100 nm; therefore,
we will neglect the vortex core region throughout this paper.
Thus if the center of magnetic vortex is situated at the point
r=a the magnetization distribution can be written in the fol-
lowing form:

M = qmM0�n�,z0� , �1�

where z0 is a unit vector along the z axis, n�= �r−a� / �r−a�
and a is a shifting vector of magnetic vortex center with
respect to the origin. In polar coordinate system �� ,�� with
the origin at the center of magnetic vortex �see Fig. 1�c��
magnetization distribution �1� takes a simple form as fol-
lows:

M = qmM0�sin �,− cos �� . �2�

Equation �2� describes the magnetization vector curling
around the center r=a in a clockwise �counterclockwise� di-
rection for qm= +1�−1�. Further we will assume a clockwise
direction of magnetization rotation �see Fig. 1�b��. Note that
in case of a circular ferromagnetic particle the shift of a
magnetic vortex from the center can be directly related to the
external magnetic field Hext as follows:

a = �p
z0 � H

M0
, �3�

where �p is the ferromagnetic nanoparticle linear magnetic
susceptibility.29 The corresponding distribution of the effec-
tive exchange field acting on free electrons can be taken as
h=h0M /M0, where h0 is determined by the value of the
exchange integral �see, e.g., Ref. 1�.

Our goal is to find a condensate Green’s function in the
ferromagnetic particle induced by an attached superconduct-
ing lead due to a proximity effect �see Fig. 1�a��. We con-
sider the “dirty limit” assuming that the mean-free path of
electrons is much shorter than all coherence lengths: l
	�s ,�N ,�F. The most restrictive condition is l	�F since the
ferromagnetic coherence length is much shorter than coher-
ence lengths in superconductor �s and normal metal �N. It
imposes certain limitation on the magnitude of exchange in-
teraction which means that the ferromagnetic should not be
very “strong.”

To analyze a proximity effect in ferromagnetic particle we
will use Usadel equations for quasiclassical Green’s func-
tions. Following the scheme presented in detail in review20

we introduce a matrix Green’s function,32

ğ = � ĝ f̂

f̂+ ḡ̂
	 .

Here ĝ is normal and f̂ is anomalous Green’s functions which
are matrices in spin space. A space where the matrix ǧ is

FIG. 1. �Color online� Sketch of the system considered: �a� fer-
romagnetic nanoparticle with vortex magnetization and attached su-
perconducting electrode. �b� Magnetic vortex at the center of the
circular particle and the polar coordinate system. �c� Shifted mag-
netic vortex and the polar coordinate system with the origin at the
vortex center.
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defined is a Gor’kov-Nambu space. We will denote Pauli
matrices in Gor’kov-Nambu space as 
̂i and in spin space as
�̂i �i=1,2 ,3�. Unit matrices are 
̂0 and �̂0, respectively. Fol-
lowing Ref. 20 the spinor basis for Green’s functions is taken
in the following form:

ĝ = �↑↑ ↑↓
↓↑ ↓↓ 	 ,

f̂ = �↑↓ ↑↑
↓↓ ↓↑ 	 ,

where ↑ and ↓ denote the spinors corresponding to spin pro-
jections sz= �1 /2.

It is convenient to use a transformation of Green’s func-

tion ǧ suggested by Ivanov and Fominov33 ǧ= V̌ǧnewV̌+,
where

V̌ = exp
− i
�

4
�
̂3 − 
̂0��̂3� . �4�

After this transformation is done the Usadel equation for the
matrix Green’s function ǧ takes the following form:

D � �ǧ � ǧ� − �
̂3, ǧ� − i�
̂3�h · �̂�, ǧ� − ��̌, ǧ� = 0, �5�

where �..� is a commutator, D is a diffusion coefficient,  is
Matsubara frequency, and h= �hx ,hy ,hz� is an effective ex-
change field. The gap function is given by

�̌ = �
̂1 Im � − 
̂2 Re ���̂0.

If there are no superconducting correlations in the normal-
metal region then the Green’s function �in Matsubara repre-
sentation� is given by

ǧ�� = sgn��
̂3�̂0. �6�

Equation �5� can be linearized assuming that

ǧ = sgn��
̂3�̂0 + F̌ , �7�

where second term is small �F̌�	1. Then we obtain a linear-

ized equation for F̌ as follows:

D�2F̌ − 2��F̌ − i sgn���
̂0�h · �̂�,F̌ = 0, �8�

where �.. is anticommutator. The linearized boundary condi-

tion for the function F̌ at the S /F interface is

n · �F̌ = F̌S/� , �9�

where �=Rb�, where Rb is the interface resistance per unit
area and � is the conductivity of the ferromagnet; n is a unit
vector normal to boundary. The anomalous function in bulk
superconductor is

F̌S = �
̂1 sin � − 
̂2 cos ���̂0Fbcs.

Here Fbcs=�0 /��0
2+2, where � and �0 are the phase and

module of the superconducting order parameter.

Note that in Eq. �8� the components of F̌ proportional to

̂1 and 
̂2 are not coupled to each other. Thus in ferromag-

netic region anomalous function has the following structure:

F̌= �
̂1 sin �− 
̂2 cos �� f̂ , where f̂ is a matrix in spin space.

For the function f̂ �when matrices in Nambu space are omit-
ted� we obtain the following equation in ferromagnetic re-
gion:

D�2 f̂ − 2�� f̂ − isgn��h · ��̂, f̂ = 0. �10�

The solution of Eq. �10� can be found as a superposition
as follows:

f̂ = a0�̂0 + a1�̂1 + a2�̂2 + a3�̂3. �11�

In this expansion the first term corresponds to the singlet
component and the last three terms correspond to the triplet
components of anomalous function with different directions
of Cooper pair spin. Note that after transformation �4� the

spin space basis for the anomalous function f̂ can be sym-
bolically written as follows:

f̂ = �↑↓ − ↑↑
↓↓ − ↓↑ 	 .

Therefore it can be seen that

Ŝi�̂i = 0,

where Ŝi is an operator of spin projection for a Cooper pair
with respect to the ith axis �i=x ,y ,z�. If the vector ftr
= �a1 ,a2 ,a3� is parallel to some real vector q in 3D space
then the Cooper pair spin projection on the vector q is zero.
This means that the Cooper pairs consist of electrons with
the opposite spin projections, or in other worlds the spin lies
in the plane perpendicular to vector q. As we will see below
the exchange field h collinear with the vector q effectively
decouples the electrons leading to the fast decay of Cooper
pair wave function into the ferromagnetic region. Otherwise
if the vector q �or more generally ftr� is not collinear to
exchange field h the LRTC appears.

The equations for coefficients ai are as follows:

D�2a0 − 2��a0 − i sgn��h · ftr = 0, �12�

D�2a1 − 2��a1 − i sgn��hxa0 = 0, �13�

D�2a2 − 2��a2 − i sgn��hya0 = 0, �14�

D�2a3 − 2��a3 − i sgn��hza0 = 0. �15�

Now let us discuss the general structure of solutions of
Eqs. �12�–�15�. If the magnetization and thus exchange field
are homogeneous then it is easy to see that there are two
types of solutions of Eqs. �12�–�15�: �i� short-range and �ii�
long-range modes. Indeed if the vector ftr= �a1 ,a2 ,a3� is par-
allel to the vector h then we obtain two equations for the
functions a0 and b= �ftr� as follows:

D�2a0 − 2��a0 − i sgn��hb = 0, �16�
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D�2b − 2��b − i sgn��ha0 = 0, �17�

which have solutions in the form: �a0 ,b��exp��n ·r�, where
�= � �1� i�kh /�2 and kh=1 /�F=�h /D and n is a unit vector
with arbitrary direction. These modes are short-range ones
since ferromagnetic exchange length �F is typically very
short. One can see that short-range modes consist of the sin-
glet part of the anomalous function with the amplitude given
by coefficient a0. Also it is a nonzero contribution from trip-
let parts. The Cooper pair spin is directed perpendicular to
the exchange field h. Therefore, such triplet superconducting
correlations are suppressed by the exchange field on the
same length scale as the singlet ones.

On the other hand if the vector ftr is perpendicular to h
then the Cooper pair spin can be oriented along h. In this
case the destructive influence of exchange field on Cooper
pairs is reduced. Indeed, from Eqs. �12�–�15� we obtain that
a0=0 and b satisfies the following equation:

D�2b − 2��b = 0, �18�

which have a solution b�exp��n ·r�, where �= �1 /�N and
�N=�D / ��. These modes are long-range ones because the
coherence length in normal metal �N can be rather large.
Note that since a0=0 these modes contain no singlet compo-
nent; i.e., they contain only LRTC.

In case of homogeneous magnetization long-range modes
cannot be excited because of the zero boundary conditions
for the triplet components,

n · �ai = 0, �19�

for i= �1,2 ,3�. The sources at the FS boundary exist only for
a singlet component,

n · �a0 = Fbcs/� , �20�

where n is a unit vector normal to the boundary. However it
is not so for the inhomogeneous magnetization distribution.
The well-known examples when LRTC can be excited are
Bloch domain wall in a thin ferromagnetic wire12 or spiral
magnetic structure which can be realized in some rare-earth
metals.15 Also recently the case of Neel domain walls in
planar proximity FS structure was investigated.13,14

Now let us consider magnetic structure with large scale
inhomogeneities. In zero-order approximation for short-
range modes we obtain Eqs. �16� and �17� for a0 and b
= �ftr� again, although the direction of vector a adiabatically
depends on the coordinate: ftr=bh /h. The solution can be
written in the following form: �a0 ,b�= �A ,B�F�r�, where A
and B=A�kh /��2 are constant and F�r�=exp�� ·r�. Boundary
conditions �19� and �20� can be written as follows:

n · �a0 = Fbcs/� , �21�

h�n · �b� = − b �n · ��h , �22�

where n is a unit vector normal to the boundary. There are
two short-range modes which decay far from FS boundary in
the ferromagnetic region, say, with �1=kh�1+ i� /�2 and �2
=kh�1− i� /�2. Taking the superposition of these modes with
arbitrary coefficients A1 and A2 we obtain from Eq. �22�,

A1��1 − S1� + A2��2 − S2� = 0,

A1��1 − S2� + A2��2 − S1� = 0,

where S1= �n ·��hx /h and S2= �n ·��hy /h. This linear system
of the homogeneous equations has a solution if and only if
S1=S2; i.e.,

�n · ��hx = �n · ��hy . �23�

This condition is fulfilled only in some special cases. The
most trivial of them is a homogeneous magnetization distri-
bution. Another particular case when condition �23� is ful-
filled is that of a circular ferromagnetic particle if the mag-
netic vortex is situated at the center of the particle. Indeed in
this case hx,y depend only on � and therefore �n ·��hx,y
= �� /�r�hx,y =0. Otherwise if the magnetic vortex is shifted
from the center or the particle shape is axially symmetric
condition �23� is not fulfilled. It means that taking into ac-
count the short-range modes only one cannot satisfy the
boundary conditions and with necessity the long-range
modes are excited.

The above qualitative description of the eigenmode struc-
ture is based on the assumption of adiabatically slow varia-
tion in magnetization and exchange field h. On the other
hand in boundary condition �22� appears a derivative of h
which in fact is a source for long-range modes. Below we
will find the corrections to the above adiabatic structure of
short-range modes. We will show that even if these correc-
tions are taken into account it is still not possible to satisfy
boundary condition �22� considering only the short-range
modes.

III. STRUCTURE OF SHORT- AND LONG-RANGE MODES
IN MAGNETIC VORTEX

For further considerations it is convenient to introduce
functions b�=a1� ia2. Taking the magnetization distribution
in form �2� we obtain

��2 − k
2 �a0 − i

kh
2

2
sgn���S��r�b+ + S�r�b−� = 0, �24�

��2 − k
2 �b+ − i sgn��kh

2S�r�a0 = 0, �25�

��2 − k
2 �b− − i sgn��kh

2S��r�a0 = 0, �26�

where k
2 =2�� /D and kh

2=h0 /D. We have introduced the
following function: S�r�= �hx+ ihy� /h0, where h0=�hx

2+hy
2.

A. Short-range modes

Usually the ferromagnetic coherence length �F=1 /kh is
very short. Most importantly it is much smaller than the size
of a particle R and the characteristic scale of the magnetiza-
tion distribution given by the function S�r�. Therefore solu-
tions of Eqs. �24�–�26� with effective wavelength �F can be
described within quasiclassical approximation. Also we ne-
glect terms proportional to k

2 . Physically it is justified since
usually the normal-metal coherence length �N�1 /k is
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much larger than the ferromagnetic coherence length �F.
Then we obtain the solution of Eqs. �24�–�26� in the fol-

lowing form �see Appendix A for details�:

a0 = F���exp��n · r� , �27�

b+ = iF���sgn��exp��n · r�
kh

2

�2
1 −
2

�
�n · ���S , �28�

b− = iF���sgn��exp��n · r�
kh

2

�2
1 −
2

�
�n · ���S�, �29�

where F��� is an arbitrary 2� periodic function and �=�1,2
=kh�1� i� /�2.

B. Long-range modes

Now we are going to consider slow modes of Eqs.
�24�–�26�. For this purpose we choose the coordinate origin
at the magnetic vortex center �� ,�� �see Fig. 1�c��. Then we
have S�r�=−iei�, and therefore Eqs. �24�–�26� allow separa-
tion of variables: a0=a�0���eiM�, b+=b�+���ei�M+1��, and b−
=b�−���ei�M−1��. Then we obtain the following:


1

�

�

��
��

�

��
	 −

M2

�2 − k
2�a�0 − sgn��

kh
2

2
�b�− − b�+� = 0,

�30�


1

�

�

��
��

�

��
	 −

�M + 1�2

�2 − k
2�b�+ − sgn��kh

2a�0 = 0,

�31�


1

�

�

��
��

�

��
	 −

�M − 1�2

�2 − k
2�b�− + sgn��kh

2a�0 = 0.

�32�

The behavior of solutions of Eqs. �30�–�32� depends on
the ratio of the ferromagnetic particle size and normal-metal
coherence length R /�N. Indeed if R��N these modes decay
at the length �N. This is not very interesting case both for the
experiment and for the theoretical study. Another limit which
can be investigated analytically is realized when �N�R. It
means that the decay of the long-range modes on the size of
a ferromagnetic particle is weak. This condition is the most
favorable for investigation of the long-range proximity ef-
fect. Therefore we neglect terms proportional to k

2 from Eqs.
�30�–�32�.

It is possible to find the long-range modes as expansion
by the orders of small parameter �Rkh�−1. The details of the
calculations are shown in Appendix B. We obtain the follow-
ing solution: a�0=0,

b�+ = b�− = B�
�M2+1, �33�

where B is an arbitrary coefficient.

IV. RESULTS

We will find the distribution of anomalous Gor’kov func-
tion in a ferromagnetic nanoparticle induced by a supercon-

ducting electrode which is attached to the particle as it is
shown in Fig. 1. The superconducting electrode attached at
some point to the ferromagnetic sample can be modeled by
the angle-dependent transparency of the FS interface �
=���� in boundary condition �20�. For simplicity we can
consider a Gauss form of transparency,

� = �0 exp�−
��� − �0�mod 2��2

��2 � , �34�

where �� is determined by a junction width d=R��� /2��.
Let us start with a general consideration. The boundary

conditions for the coefficients a0, b+, and b− at the boundary
of a ferromagnetic particle read as follows:

n · �a0 =
Fbcs

����
, �35�

n · �b� = 0. �36�

To satisfy the boundary condition for a0 we take the su-
perposition of solutions �27�–�29� corresponding to �1
=kh�1+ i� /�2 and �1=kh�1− i� /�2 with arbitrary functions
F1,2���. We will take into account only those solutions which
decay far from the FS boundary. Using expression �2� for the
vortex magnetization and taking into account that S�r�=
−iei� from Eqs. �35� and �36� we obtain as follows:

�
j=1,2

� jFj��� =
Fbcs

�
, �37�

ei� sgn�� �
j=1,2

Fj���
kh

2

� j

1 −

i

� j
�n · ���� + n · �bl+ = 0,

�38�

e−i� sgn�� �
j=1,2

Fj���
kh

2

� j

1 +

i

� j
�n · ���� − n · �bl− = 0,

�39�

where bl��r� are the contributions of the long-range modes.
The structure of the long-range modes yields the following
relation for the coefficients e−i�bl+=ei�bl−. Let us denote
sgn��bl0=e−i�bl+=ei�bl−. Then from Eqs. �38� and �39� we
obtain as follows:

F1

�1
+

F2

�2
= − ibl0

n · ��

kh
2 , �40�

�n · ����F1

�1
2 +

F2

�2
2	 = i

n · �bl0

kh
2 . �41�

One has �1,2�kh; therefore, the r.h.s. of Eq. �40� is small and
with good accuracy F1 /�1+F2 /�2=0. Equations �37� and
�41� then yield

F1,2 = Fbcs/�2��1,2� �42�

and

n · �bl0 =
i

�2kh

Fbcs

�
�n · ��� , �43�

POSSIBILITY OF A LONG-RANGE PROXIMITY EFFECT… PHYSICAL REVIEW B 79, 184505 �2009�

184505-5



We search the contribution from the long-range modes as
a superposition,

bl0 = � Cm�
�m2+1eim�, �44�

where � ,� are the polar coordinates relative to the center of
a magnetic vortex. We use numerical methods to calculate
the coefficients in sum �44�. We assume the angle-dependent
transparency in Eq. �35� in form �34� with ��=0.02 and the
value of the ferromagnetic coherence length �F=0.02R. Fur-
ther we will consider two typical cases: �i� magnetic vortex
in a circular particle shifted from the center of it and �ii�
magnetic vortex at the center of a particle having the ellipti-
cal shape.

A. Shifted magnetic vortex

Let us assume for simplicity that the shifting vector is
directed along the x axis: a= �ax ,0�. The vector normal to the
boundary is directed along the disk radius: n=r /r. Then the
short-range modes are given by Eqs. �27�–�29� with

S�r� =
i�a − rei��

�r2 − 2ar cos � + a2�1/2

and

�n · ��S =
dS

dr
=

a sin ��a − rei��
�r2 − 2ar cos � + a2�3/2 .

The boundary condition for the long-range modes �Eq. �43��
takes the following form:

�dbl0

dr
�

r=R
=

i
�2kh

Fbcs

�
Q��� , �45�

where

Q��� =
a sin �

�R2 − 2aR cos � + a2�
.

In general, the amplitudes of the short-range modes given by
Eqs. �27� and �42� are determined by the dimensionless fac-
tor �F /�0. From Eq. �33� it is easy to see that dbl0 /dr�r
=R��bl0 /R. Thus, when the vortex shifting is small �a
	R� the amplitude of LRTC is determined by the dimen-
sionless factor ��F /�0��a /R�; i.e., it is �R /a� times smaller
than the amplitudes of the short-range triplet components.

In case when a junction with a superconducting lead is
narrow ��	2�, the amplitude of the LRTC is determined by
the function �Q��0��. One can see that the maximum ampli-
tude is obtained when cos �0=2aR / �R2+a2�. On the other
hand the long-range proximity effect is absent if �0=0 or �.
This is caused by the symmetry of the magnetization distri-
bution. In such case the magnetization is constant along the
direction of surface normal vector at the point where the
superconducting lead is attached. Therefore there appears no
source for LRTC at the FS boundary.

To demonstrate the enhancement of the LRTC in the fer-
romagnetic particle with the shifted magnetic vortex we plot
in Fig. 2�a� the distribution of the amplitude of the triplet

part of the anomalous function � f̂ tr�=��a1�2+ �a2�2 �see expan-

sion �11��. We choose the position of a superconducting con-
tact �0=0 and the magnetic vortex shifting vector a= �0,ay�.

B. Magnetic vortex in elliptical particle

Now let us consider the situation when the magnetic vor-
tex is situated at the center of a particle but the particle itself
has elliptical shape. The boundary of the elliptical particle is
determined by the equation �x /Rx�2+ �y /Ry�2=1. It is conve-
nient to write the vector normal to the boundary in the polar
coordinate frame n=nrr0+n��0, where

nr =
Ry

2 cos2 � + Rx
2 sin2 �

�Ry
4 cos2 � + Rx

4 sin2 �
,

n� =
�Rx

2 − Ry
2�sin�2��

2�Ry
4 cos2 � + Rx

4 sin2 �
.

Then the short-range modes are given by Eqs. �27�–�29� with
S�r�=−iei� and �n ·��S= �n� /r��dS /d��, or

�n · ��S = ei� sin�2��
Rx

2 − Ry
2

2RxRy
�Ry

2 cos2 � + Rx
2 sin2 �

Ry
4 cos2 � + Rx

4 sin2 �
.

The boundary condition for the long-range modes �Eq. �43��
then takes form �45� with

−1 0 1
−1

0

1

x/R

y/
R

−1 0 1
−1

0

1

x/R
x

y/
R

y

(a)

(b)

FIG. 2. �Color online� Amplitude of the triplet anomalous func-
tion induced due to the proximity effect. The position of magnetic
vortex center is marked by the white circle. �a� Shifted magnetic
vortex in circular particle; vortex shifting vector is a= �0,−R /2�;
and �b� magnetic vortex at the center of elliptical particle with axes
ratio Rx /Ry =1.5.
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Q��� = sin�2��
Rx

2 − Ry
2

2RxRy
�Ry

2 cos2 � + Rx
2 sin2 �

Ry
4 cos2 � + Rx

4 sin2 �
.

One can see that when the shape of the particle is nearly
circular �R=��Rx

2−Ry
2�	Rx ,Ry the amplitude of LRTC is de-

termined by the dimensionless factor ��F /�0���R /R0�, where
�R=��Rx

2−Ry
2� is a measure of axial anisotropy of the ellip-

tical ferromagnetic nanoparticle and R0=�Rx
2+Ry

2.
Since the center of the magnetic vortex is assumed to

coincide with the particle center we search the long-range
modes in the form of expansion �44� with �=r and �=�.
Then we obtain

n · �bl0 = �
m

Cmr
�m2+1−1eim��nr

�m2 + 1 + in�m� .

Going along the same lines as in the previous section we
find the coefficients Cm numerically and obtain the distribu-
tion of the amplitude of the triplet component of the anoma-
lous function shown in Fig. 2�b�. We choose the position of
the superconducting contact �0=� /4.

V. DISCUSSION

Experimental observation of the proximity effect in FS
structures can be done, for example, using Andreev interfer-
ometer geometry to measure the modulation of the conduc-
tivity of a ferromagnetic sample as a function of the phase
difference between the superconducting leads.11 Therefore it
is interesting to investigate the influence of the long-range
proximity effect on the transport properties of ferromagnetic
nanoparticles. Let us consider a system shown in Fig. 3 �see
the inset�. We assume that there are two superconducting
leads with different phases of the superconducting order pa-
rameter �1,2 attached at the different points to the circular
ferromagnetic nanoparticle. The normal lead measures the
conductance of the system. In case of a point junction with
normal lead one can use a general relation between a zero-
bias tunneling conductance G and a local density of states
�LDOS� � in the ferromagnetic particle at the junction point
as follows:

G = Gn��/�n� , �46�

where Gn and �n are the point junction conductance and
LDOS in the normal state of the ferromagnetic particle. The
above expression for the local tunneling conductance is valid
only if the voltage drops in the small vicinity of the junction
point. This condition can be obtained assuming, for example,
that the potential surface barrier is so high that all voltages
drop just at the interface between the normal lead and the
ferromagnetic particle. But in case of a point junction Eq.
�46� can be used even for an ideal interface because the
voltage drops at the distance determined by the junction size.
Note that it is not so if, for example, a conductance of one-
dimensional wire is considered.12,34 We will assume that the
junction size is much smaller than other characteristic
lengths and employ expression �46� for the tunneling con-
ductance.

Having found the condensate function f̂ , we can calculate
the LDOS in the ferromagnetic region. The LDOS is given
by the general formula20

� =
�n

4
Re Tr�
̂3�̂0ǧ� ,

where =−i�+0 and the trace is taken in both the Gor’kov-
Nambu and spin spaces. Using the normalization condition

ĝ2+ f̂ f̂+=1 and the smallness of the condensate function, we
obtain the correction to the conductance of the point junction
as follows:

�G/Gn = −
1

2
Re Tr� f̂ f̂+� .

The anomalous function F̌ has the following structure in
Gor’kov-Nambu space:

F̌ = �
i

f̂ i�sin �i
̂1 − cos �i
̂2� ,

where �1,2=�0 exp�i�1,2� are the gap functions in the super-
conducting leads. Therefore,

f̂ = ie−i�1 f̂1 + ie−i�2 f̂2

and

f̂+ = iei�1 f̂1 + iei�2 f̂2.

Thus we obtain

�G/Gn =
1

2
Re Tr� f̂1

2 + f̂2
2 + 2 f̂1 f̂2 cos �� , �47�

where �=�1−�2. Probably the most important for experi-
ments is the conductance correction in Eq. �47� which de-
pends on the phase difference � due to the interference be-
tween the anomalous functions induced by different

superconducting leads �G /Gn=cos � Re Tr� f̂1 f̂2�. In Fig. 3
we show the dependence of the amplitude of conductance

modulation �G=Gn Re Tr� f̂1 f̂2� on the distance of the mag-
netic vortex center from the center of the ferromagnetic par-
ticle. Different curves in this plot correspond to the different

FIG. 3. �Color online� A superconducting phase sensitive cor-
rection to the local conductance as a function of the magnetic vor-
tex displacement with respect to the center of a circular ferromag-
netic particle �see the inset�. Different curves correspond to the
angle � values �from bottom to top�: �=0, 2�

10 , 3�
10 , 4�

10 , �

2 .
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directions of vortex shifting vector a �see the sketch of the
system considered on the inset in Fig. 3�. We normalize the
conductance to the following value G0=Gn��F /�0�2 which is
entirely determined by the fixed parameters of the system.

Analyzing Fig. 3 one can see that the strongest effect is
achieved by shifting the vortex symmetrically with respect to
the superconducting contacts ��=0�. On the contrary, the
effect of conductance modulation is very small in case of the
vortex shifting along the line between two superconducting
leads ��=� /2, top curve�. As we have discussed above, in
this case the LRTCs are weak due to the symmetry of the
magnetization distribution. A nonzero value of the conduc-
tance modulation in this case is caused only by the finite
width of the superconducting junctions used in calculations.
Furthermore, in Fig. 3 all the curves, except for the top one
which corresponds to �=� /2, demonstrate strong asymme-
try with respect to the sign of the vortex displacement
�G�a���G�−a�. Such asymmetry is caused by the system
geometry since we consider a conductance of only one point
junction. As one can see if the magnetic vortex shifts toward
the normal contact �positive a in Fig. 3� the conductance
modulation appears to be very small compared to the case
when the magnetic vortex shifts in the opposite direction
�negative a in Fig. 3�. This effect can be understood if we
recall that the long-range modes are strongly suppressed near
the vortex center �see Eq. �33��. Thus even if the overall
amplitude of LRTC is increased with �a�, the local value of
anomalous function at the junction point is decreased if the
magnetic vortex center shifts toward the junction point.

The shift of the magnetic vortex is unambiguously deter-
mined by the magnetic field �see Eq. �3��; therefore, the
asymmetry �G�a���G�−a� will be revealed in the conduc-
tance dependence on the external magnetic field: �G�H�
��G�−H�. But in reality one always has two contacts and
the total conductance correction is a sum of the contributions
from each contact. Thus the resulting behavior of the con-
ductance should depend on the position of the points where
superconducting and normal contacts are connected to the
ferromagnetic particle. In particular, if the system geometry
is symmetric with respect to the spatial inversion the conduc-
tance correction will not depend on the sign of vortex shift-
ing a as well as on the sign of the magnetic field �G�H�
=�G�−H�.

In Fig. 3 the modulation of conductance is shown not for
the entire range of the magnetic vortex displacements from
the particle center. The reason is a growing complexity of
numerical calculations because when the magnetic vortex
center approaches close to the particle boundary one has to
take into account too many angular harmonics in expansion
�44�. We expect further monotonic growth of ��G�a�� until
�a��R. If the vortex displacement distance becomes larger
than the particle radius �a��R, the vortex actually leaves the
particle. Such magnetization state often is referred to as
“buckle.”28 Further increase in �a� describes in fact a continu-
ous transition to the homogeneously magnetized state. There-
fore, the conductance correction should eventually vanish as
�a�→0.

The overall magnitude of the conductance modulations is
determined by many factors. One of them is a vortex dis-
placement, which can be regulated by the external magnetic

field. Other factors are determined by the geometry of the
system, e.g., the width of superconducting leads and the par-
ticle size R. Also there is a dimensionless factor �F /�0,
which depends on the material parameters: ferromagnetic co-
herence length �F and �0=RF�int, where RF is the resistance
per unit area of FS interface and �int is the conductivity of
ferromagnetic.20 This factor determines the amplitude of the
anomalous function within the ferromagnetic region and
should be small within our calculation scheme because we
consider the linearized Usadel equation. For a particular
configuration shown on the inset in Fig. 3 we obtain the
maximal amplitude of conductance modulation �G
�10−2��F /�0�2Gn, where Gn is the unperturbed conductance
in the normal state of the particle. To have a better effect in
experiment one should try to increase the ratio �F /�0. For
example this can be obtained by using not very strong ferro-
magnetic material with relatively large �F, e.g., Cu-Ni
alloys,35 characterized by rather large coherence lengths:
�F�10 nm. However the magnetic vortex has been ob-
served in rather strong ferromagnets such as C or Pe with
�F�1 nm. On the other hand, one can try to improve the
properties of the superconducting contacts, i.e., to use the
contacts with low interface resistance RF.

VI. CONCLUSION

To summarize we have investigated the proximity effect
in the ferromagnetic nanoparticle with nonhomogeneous vor-
tex magnetization distribution. We have derived a general
solution both for the short-range components and the long-
range triplet components of the anomalous function. Quite
generally it is shown that the long-range proximity effect can
be realized if the axial symmetry of the magnetization distri-
bution is broken either due to the shifting of magnetic vortex
with respect to the particle center or due to the angular an-
isotropy of the particle shape, which can be, for example,
elliptical in real experiments. Also we have considered the
superconducting phase-periodic oscillations of the particle
conductance in Andreev interferometer geometry, which has
been used recently to study the proximity effect in a conical
ferromagnet.11 We have shown that the amplitude of conduc-
tance oscillations strongly depends on the direction of exter-
nal magnetic field which determines the shift of magnetic
vortex with respect to the particle center. For a particular
case of a circular ferromagnetic particle the conductance os-
cillations are the largest when the vortex shifting is symmet-
ric with respect to the superconducting contacts position.
However, we suppose that the optimal direction of vortex
shifting for the observation of the long-range proximity ef-
fect should depend on the system geometry, such as particle
shape and position of the points where the superconducting
and normal contacts are connected to it.
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APPENDIX A: DERIVATION OF THE SHORT-RANGE
MODES

We search quasiclassical solutions of Eqs. �24�–�26� in the
following form:

�a0,b+,b−� = exp��n · r��a0q,b+q,b−q� , �A1�

where n is a unit vector, � is large, and functions a0q ,b+q ,b−q
are slow. Note that in principle the direction of vector n is
arbitrary and should be determined from the boundary con-
ditions. But we assume from the beginning that the spatial
scale of the anomalous function variation along the boundary
is much larger than 1 / ���. Thus we can consider vector n as
normal to the boundary of a ferromagnetic. First we need to
find �. Substituting functions in form �A1� into Eqs.
�24�–�26� we obtain: �4=−kh

4; i.e., �= �−1�1/4kh which corre-
sponds to the short-range modes and �=0 which we will
discuss. For quasiclassical envelopes we obtain the following
equations:

2��n��a0q + �2a0q − i
kh

2

2
sgn���S��r�b+q + S�r�b−q� = 0,

�A2�

2��n��b+q + �2b+q − i sgn��kh
2S�r�a0q = 0, �A3�

2��n��b−q + �2b−q − i sgn��kh
2S��r�a0q = 0. �A4�

Since all � have large real parts all the solutions decay or
grow very fast. We will take into account only those which
decay far from the boundary of the ferromagnetic particle.
Then we should leave �1=kh�1+ i� /�2 and �2=kh�1− i� /�2.
Let us now find the solutions of quasiclassical equations
�A2�–�A4�. We will use a perturbation method.

Let us at first assume that a0q=const. Then to the zero
order,

b+q = ia0q sgn��
kh

2

�2S�r� , �A5�

b−q = ia0q sgn��
kh

2

�2S��r� . �A6�

Note that we also can assume a0q=G�r�, where G�r� is arbi-
trary but rather slow function. In this case two other coeffi-
cients b+q and b−q are proportional to G�r�. The condition
�n��G	 ��� guarantees that this will not change the structure
of eigenmodes. Substituting expressions �A5� and �A6� into
Eqs. �A3� and �A4� we obtain the first-order perturbations,

b̃+q = − 2ia0q sgn��
kh

2

�3 �n��S�r� ,

b̃−q = − 2ia0q sgn��
kh

2

�3 �n��S��r� .

APPENDIX B: DERIVATION OF THE LONG-RANGE
MODES

The long-range modes can be found solving Eqs.
�30�–�32� with neglected terms proportional to k

2 ,


1

�

�

��
��

�

��
	 −

M2

�2 �a�0 − sgn��
kh

2

2
�b�− − b�+� = 0,

�B1�


1

�

�

��
��

�

��
	 −

�M + 1�2

�2 �b�+ − sgn��kh
2a�0 = 0, �B2�


1

�

�

��
��

�

��
	 −

�M − 1�2

�2 �b�− + sgn��kh
2a�0 = 0. �B3�

It is convenient to rearrange these equations introducing
new functions bs=b�++b�− and bd=b�+−b�− as follows:

� �2

��2 +
1

�

�

��
−

M2

�2 	a�0 + sgn��
kh

2

2
bd = 0, �B4�

� �2

��2 +
1

�

�

��
−

M2 + 1

�2 	bs −
2M

�2 bd = 0, �B5�

� �2

��2 +
1

�

�

��
−

M2 + 1

�2 	bd −
2M

�2 bs − 2 sgn��kh
2a�0 = 0.

�B6�

We will find the solutions of these equations as expansion by
the orders of the small parameter ��kh�−1 assuming that the
distance from vortex center is much larger than the ferro-
magnetic coherence length ���F. It is easy to see that if
kh→�, we obtain that bd=0 and a�0=0 and

� �2

��2 +
1

�

�

��
−

M2 + 1

�2 	bs = 0. �B7�

The solution of this equation is bs=Bs0�
�M2+1. Then from the

Eq. �B6� we get

a�0 = − sgn��
2M

�kh��2 ,

bs = − sgn��
2M

�kh��2�
�M2+1Bs0.

The function bd is obtained from Eq. �B4� as follows:

bd = −
4M�5 − 4�M2 + 1�

�kh��4 �
�M2+1Bs0.

Substituting it to Eq. �B5� we obtain the next correction for
bs on the order of �kh��−4 which can be neglected.
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